Modeling Management Strategies for the Control of Bighorn Sheep Respiratory Disease

EMILY ALMBERG, Montana Fish, Wildlife, and Parks, Bozeman, MT
KEZIA MANLOVE, Center for Infectious Disease Dynamics, Penn State University, University Park, PA
FRANCES CASSIRER, Idaho Department of Fish and Game, Lewiston, ID
JENNIFER RAMSEY, Montana Fish, Wildlife, and Parks, Bozeman, MT
KERI CARSON, Montana Fish, Wildlife, and Parks, Bozeman, MT
JUSTIN GUDE, Montana Fish, Wildlife, and Parks, Helena, MT
RAINIA PLOWRIGHT, Dept of Microbiology & Immunology, Montana State University, Bozeman, MT
The problem
Biological understanding of problem

• *Mycoplasma ovipneumoniae* (Movi) is necessary to cause epidemic and chronic pneumonia
 – Domestic sheep & goats
 – Invades BHS, triggers all-age die-off, some adults become chronic carriers, this facilitates perennial lamb failure

• Unknown how other pathogens contribute to severity of morbidity and mortality

• Unknown how often Movi goes extinct
Where simulation models can help...

- Can we generate predictions given our current biological understanding?
 - Disease dynamics—are simulations realistic?
 - Which parameters are most influential?
 - Management tools and outcomes
Pathogen invasion
Pathogen invasion
Pathogen invasion

Pathogen persistence
Can we reduce the persistence of Movi through management?
Disease model

\[\lambda \]

\[\text{birth} \]

\[\text{3 weeks 16 weeks} \]

\[\text{15\%} \]

\[\text{lifelong} \]

\[\text{85\%} \]

\[\text{lifelong} \]
Disease model

\[\text{Sur} = 0.77 - 0.8; 0.5 \]

\[\text{Sur} = 0.87 - 0.9; 0.5 \]

\[\text{Sur} = 0.5; 0.1 \]
Disease model

\[
\begin{align*}
S & \xrightarrow{\lambda} E \xrightarrow{3 \text{ weeks}} I \xrightarrow{15\%} C \\
& \enspace \xrightarrow{16 \text{ weeks}} I \xrightarrow{85\%} R \\
& \quad \xrightarrow{\text{lifelong}} C \\
& \quad \xrightarrow{\text{lifelong}} R
\end{align*}
\]

\[
\text{March survey} \quad \text{October survey}
\]

\[\lambda \quad \text{Weekly time step within annual cycle}\]

\[
\text{Rut}
\]

\[
\begin{align*}
\text{Sur} &= 0.77 - 0.8; \, 0.5 \\
\text{Sur} &= 0.87 - 0.9; \, 0.5 \\
\text{Sur} &= 0.5; \, 0.1
\end{align*}
\]
Assumptions about transmission

• Density dependent transmission
 – Contact rate increases with density

• Frequency dependent transmission
 – Contact rate is independent of density
Basic dynamics
Basic dynamics

Density Dependent; High survival

Population size

0 100 300

Year

0 20 40 60 80 100
Basic dynamics
Basic dynamics

- Density Dependent; High survival
- Frequency Dependent; High survival
- Density Dependent; Low survival
- Frequency Dependent; Low survival
Management Tools

• Augmentation
• Test and cull
• Density reduction (non-selective cull)
• Depopulation and reintroduction

*Focused on transmission, not resiliency
Augmentation

- Scenario 1: Add 30 ewes that are immune to the recipient herd’s strain of Movi

- Scenario 2: Add 30 susceptible ewes to the recipient herd
Augmentation
Augmentation

- Does not improve recovery
- What if strain typing doesn’t identify epitope variation?
Test and Cull

• Scenario 1: Capture and test 95% of the herd and remove any individual testing positive (infectious or carriers) for Movi

• Scenario 2: Repeat above for a total of two consecutive years
Test and Cull

No Management

Population Size

0 200 400
0 20 40 60 80 100

Test (95%) and Cull

Population Size

0 200 400
0 20 40 60 80 100

One Year
Two Years
Test and Cull

- Assumes you can’t detect “exposed” individuals
- Success is improved by repeating test and cull for 2 years
Density Reduction

Translocation out

Translocation into

Pneumonia outbreak
Density Reduction

No Management

Population Size

Year

Density Reduction

Population Size

Year

25%

50%
Density Reduction

- Stochastic removal of exposed, infected, and carrier individuals
- If transmission is density dependent, may slow rate of new infections
Depopulation and Reintroduction

Tendoy Mountains
Bighorn sheep herd in Montana's Tendoy Mountains targeted

Jul 12, 2015

• Ideally, depopulation = 100% removal

• What if we are only able to remove 95% of the herd?
Depopulation and Reintroduction

No Management

Depopulation (95%) and Reintroduction
Depopulation and Reintroduction

- Ability to find sufficient numbers of “clean” sheep?
- How long does it take to completely depopulate?
Density Dependent Transmission

No Management

Augmentation (30 Ewes)

Test (95%) and Cull

Density Reduction

Depopulation (95%) and Reintroduction
Probability of Movi extinction

Assuming high host survival
Probability of Movi extinction

*Assuming low host survival; note shorter time scale
Conclusions

• Augmentation not predicted to help

• Density reduction offers small improvement
 – Added risk of inbreeding depression, Allee affects

• Test and cull and depopulation predicted to offer best probability of recovery
 – Must test or depopulate large portion of herd

• Shinny app
Caveats

• Model results are preliminary—still need full sensitivity analysis

• Different measures of “success” and acceptability
 – Speed/probability of population recovery
 – Management costs
 – Values

• Timescales
 – Action vs waiting?
 – Waiting is complicated if spillover risk continues
Management must address entire picture to make progress

- Prevention is still best practice