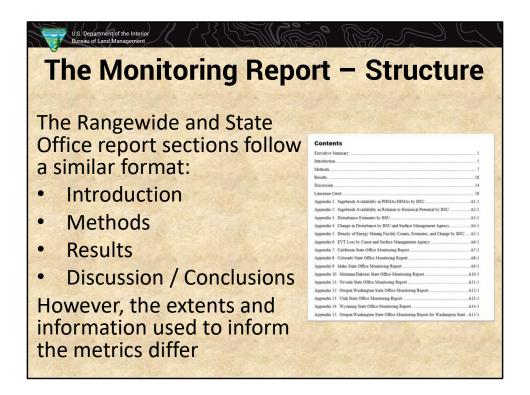
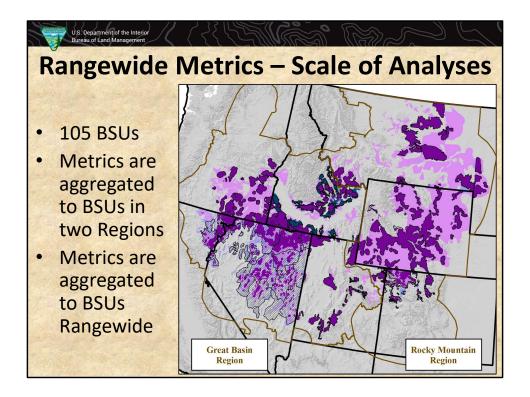


- The Sage-Grouse Monitoring Framework is an appendix in every 2015 sage-grouse land use plan amendment or revision
- It forms the basis for the BLM's monitoring report, outlining two levels of monitoring: The National Planning Strategy & Land Use Plan levels
- For each level of monitoring, a suite of metrics are identified and the BLM has aggregated information to address each in our monitoring report

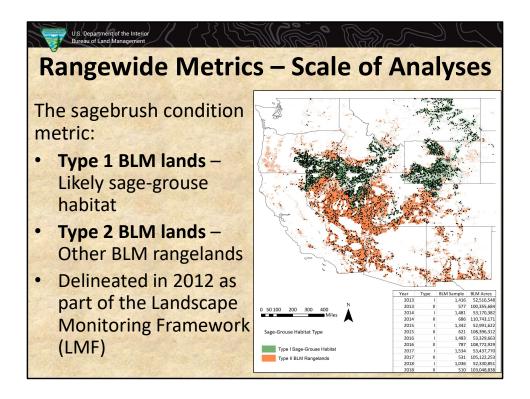

- There are 5 metrics identified to evaluate the national planning strategy
- These constitute the "rangewide" portion of the BLM report


- There are four metrics identified for the land use plan monitoring
- These constitute each state office report, which are individual appendices to the rangewide report

- The BLM report is comprised of the main body plus 6 appendices (tables) addressing the rangewide topics
- Appendices to the rangewide report summarize information within each BLM State
 Office with a sage-grouse land use plan, plus a report for Washington state
 (Columbia basin population)

- · A similar format is used for both levels of reporting
- Different suites on information are used the rangewide and state office reports, however
- This information is summarized/analyzed at different scales as well

The BLM set the *minimum* extent for the majority of analyses used to evaluate the national planning strategy to *Biologically Significant Units (BSUs)*.

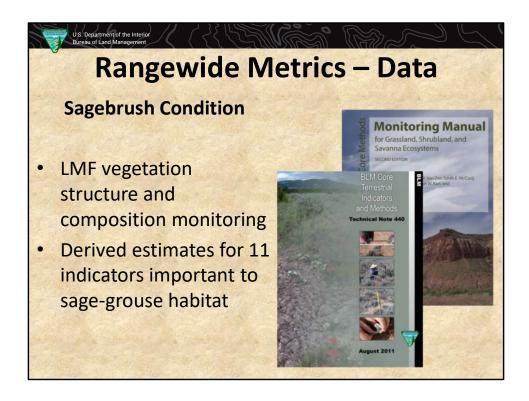

A BSU is a geographic unit of **Priority Habitat Management Areas** (Important HMA in ID)

BSUs are also the extent at which:

Anthropogenic disturbance caps are evaluated (in addition to project scale) Habitat and population adaptive management triggers are evaluated

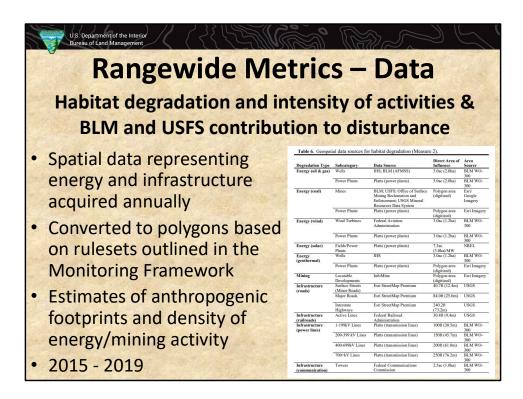
The **BSU scale** is used to address the following national planning strategy metrics:

- 1. Sagebrush availability (not condition)
- 2. Habitat degradation and intensity of activities
- Population estimation and change -> Defer to SO Reports and USGS/State Wildlife Agency efforts
- 4. BLM and USFS contribution to changes in the amount of sagebrush
- BLM and USFS contribution to disturbance



- The condition portion of the rangewide report is informed by the BLM's Landscape Monitoring Framework data collection and analysis effort.
- In 2012, BLM rangelands were divided into "Type I" and "Type II" categories, where the best available information was used to identify likely sage-grouse habitats on BLM managed lands (Type I).
- Field sampling was intensified in the Type I areas to better inform vegetation structure and composition analyses in sage-grouse habitat.

Sagebrush availability & BLM and USFS contribution to changes in the amount of sagebrush


- LANDFIRE existing vegetation type (EVT): current sagebrush vegetation communities
- LANDFIRE biophysical settings (BpS): areas historically capable of supporting sagebrush vegetation communities
- Updated annually to remove areas lost to:
 - Fire (Fire perimeters, Monitoring Trends in Burn Severity)
 - Agricultural conversion (USDA National Cropland Data)
 - Impervious surfaces (National Land Cover Database)
- 2012 2017, summarized by Surface Management Agency (BLM, USFS, Other Federal, State, Private)
- The monitoring framework outlines how LANDFIRE data is used to track sagebrush (EVT) loss
- We use LANDFIRE models of historical potential (BpS) to frame the sagebrush extent and loss estimates relative to areas believed to be capable of supporting sagebrush
- Each year areas of sagebrush lost to fire and agricultural conversion removed from this dataset, with impervious surface data being utilized approximately every 5 years based on its update frequency
- We present this sagebrush availability metric for years 2102 through 2017.
- This time lag is due to the availability of the Monitoring Trends in Burn Severity dataset, which is used to remove sagebrush lost to large (>1k acres) fires. The data is available 1.5 2 years after the fire season.
- This information is summarized by surface management agency (BLM data)

The sagebrush condition metric is informed by on-the-ground- data, collected on BLM managed rangelands.

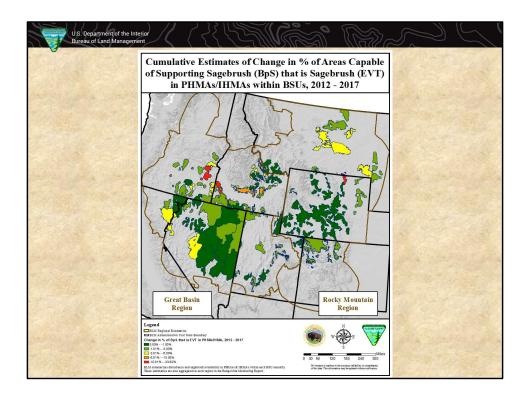
11 indicators are estimated:

- 1. Percent cover of sagebrush on BLM rangelands
- 2. Mean sagebrush species height in inches on BLM rangelands
- 3. Proportion of sagebrush that is columnar shaped on BLM rangelands
- 4. Proportion of sagebrush that is spreading shaped on BLM rangelands
- 5. Percent cover of perennial grasses and perennial forbs on BLM rangelands
- 6. Mean herbaceous plant species height in inches on BLM rangelands
- 7. Percent cover of bare ground on BLM rangelands
- 8. Proportion of BLM rangelands with nonnative invasive species present
- 9. Proportion of BLM rangelands where ≥25% of foliar cover is comprised of nonnative invasive species
- 10. Proportion of vegetation composed of annual grasses on BLM rangelands
- 11. Proportion of vegetation composed of nonnative invasive plant species on BLM rangelands

- The BLM has been acquiring and combining spatial data representing anthropogenic development across the range
- These data are combined to estimate the footprints of energy and other infrastructure according to rulesets outlined in the Monitoring Framework
- Density of energy and mining activities are also estimated
- Each year, updated data are acquired and analyzed facilitating a trend analysis for 2015 - 2019

- 1. Habitat objectives:
 - Habitat Management Areas (PHMA, GHMA, etc)
 - Seasonal Habitats (if available)
 - Habitat adaptive management trigger summary at BSU scale
- 2. Achievement of land health standards
 - Allotments with sage-grouse habitat
- 3. Disturbance objectives
 - Surface disturbing project summaries within PHMA & IHMA and disturbance cap compliance
- 4. Population trends
 - Population adaptive management trigger summary at BSU scale
- Each State Office repot addresses the land se plan metrics at slightly different scales as detailed here.
- These scales are identified in either the land use plan (habitat objectives, disturbance objectives, adaptive management triggers) or existing BLM scales of decision making (allotments for land health)

State Office Metrics – Data


- 1. Habitat objectives:
 - AIM and LMF monitoring locations → Count of plots meeting/not meeting by HMA & seasonal habitat
 - LMF based estimates at the state level
 - Habitat adaptive management triggers tripped summary
- 2. Achievement of land health standards
 - Acres meeting all land health standards
 - Acres not meeting all land health standards, grazing was causal, and management was changed
 - Some states provide additional information
- 3. Disturbance objectives
 - BLM/State tracking of authorizations in PHMA / IHMA
- 4. Population trends
 - In conjunction with State partners
 - Population adaptive management triggers tripped summary

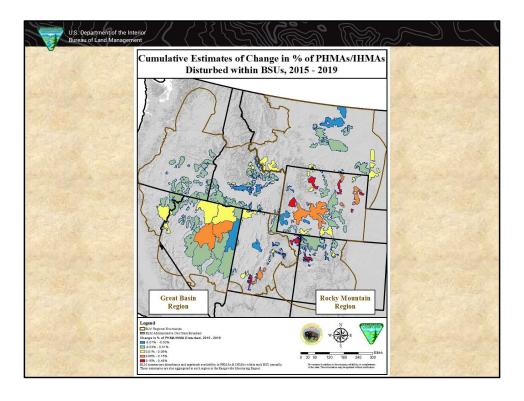
The data analyzed to inform each metric also vary by metric as described here.

Rangewide Metrics: Sagebrush Availability

- Approximately 1.2M acres of sagebrush was last in PHMA/IHMA between 2012 – 2017
- Loss was greatest in the Great Basin (744k acres) vs Rocky Mountain (471k acres)
- Wildland fire is the largest cause of sagebrush loss at the rangewide scale
 - 75% of sagebrush loss in the Great Basin Region
 - 27% of sagebrush loss in the Rock Mountain Region
- Percent of areas historically capable of supporting sagebrush communities that are currently supporting sagebrush vegetation communities:
 - Great Basin 2012 ~79% → 2017 ~71%
 - Rocky Mountain 2012 ~86% → 2017 ~ 84%
- A great deal of sagebrush has been lost in PHMA/IHMA (as well as in other habitat management areas)
- The majority has been lost in the Great Basin BSUs
- The primary driver of all sagebrush loss has been wildland fire
- At the onset of monitoring, the great basin had a lower percentage of areas capable of supporting sagebrush in sagebrush than the rocky mountain region
- This remained true at the last year of data analysis

- Sagebrush loss is not equally distributed across the landscape.
- This map identifies BSUs based on percent of change in sagebrush availability.
- Note that despite the rocky mountain region retaining more areas capable of supporting sagebrush in sagebrush, some BSUs have experienced a great deal of loss

Findings


Rangewide Metrics: Sagebrush Condition

- The beneficial attributes (sagebrush cover, height and shape, perennial grass and forb cover and height) remained relatively constant or displayed modest increases within sage-grouse habitats
- Of the nonbeneficial indicators of sagebrush community structure and composition monitored (bare ground, nonnative/invasive species, and annual grasses), nonnatives and annual grasses displayed an increase in presence and abundance within sage-grouse habitats.
- Invasives remain a threat and the monitoring data indicate that threat may be increasing

Rangewide Metrics: Habitat Degradation & Intensity of Development

- Estimates of anthropogenic footprints increased in PHMA/IHMA by approximately 0.3% from 2015 2019
- The Rocky Mountain Region accounted for ~68% of this increase.
- Density estimate changes were negligible (< 0.01 facilities/640 acres)
- No BSUs are estimated to exceed the 3% disturbance cap
- Modest increase of anthropogenic footprint in PHMA/IHMA
- Majority of this has occurred in the rocky mountain region
- Energy and mining density has remained fairly consistent
- No BSUs are estimated to be over the 3% cap

- Similar to sagebrush loss, changes in anthropogenic disturbance estimates are not uniform
- While the rocky mountain BSUs are the primary areas where anthropogenic disturbance has increased, some great basin BSUs have high increases as well

Rangewide Metrics: Contribution to sagebrush loss and disturbance

- Sagebrush loss in PHMA/IHMA was primarily on BLM managed lands (52%) and private lands (40%)
- Wildland fire and agricultural conversion do not reflect BLM/FS authorizations, but are primary drivers of loss
- Approximately 13% of sagebrush loss to impervious surfaces occurred on BLM managed lands
- Increases in estimated disturbance are primarily on BLM and privately managed lands (~50% and ~40% of the increase, respectively)

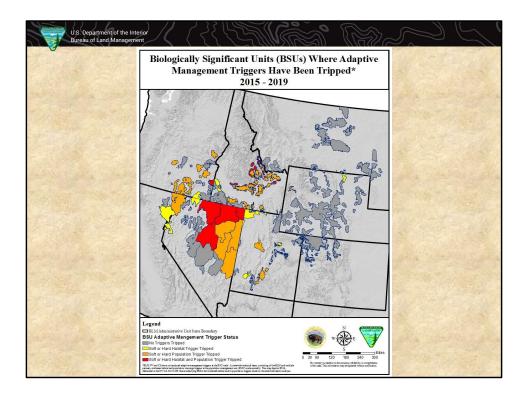
Findings State Office Metrics

1. Habitat objectives:

- Too variable to summarize succinctly here
- 16 habitat adaptive management triggers have been tripped

2. Achievement of land health standards:

- ~3 million acres of allotments with sage-grouse habitat have achieved, or are making progress towards achieving, all land health standards
- Livestock grazing management was changed on more than 620,000 acres of allotments with sage-grouse habitat
- The state offices have summarized thousands of monitoring locations in sagegrouse habitats based on the habitat objectives tables' suite of indicators and benchmarks.
- Additionally, states provide descriptions of habitat adaptive management triggers that have been tripped
- A total of 16 triggers have been found to have tripped since 2015
- BLM has assessed and found that approximately 3 million acres within allotments that contain sage-grouse habitat are achieving or making progress towards achieving all land health standards
- Grazing management was changed on 620,000 acres in allotments with sagegrouse habitat where at least one land health standard was not achieved, and grazing was a causal factor for not meeting a standard.


Findings State Office Metrics

3. Disturbance objectives:

- A total of 604 authorizations representing approximately
 73,000 acres in PHMA/IHMA
- Authorization ≠ constructed
- Exceptions to site-scale disturbance caps (two authorizations) are discussed.

4. Population trends:

- In conjunction with State partners
- 42 population adaptive management triggers have been tripped
- The state office reports detail 604 surface disturbing authorizations representing approximately 73,000 acres in PHMA and IHMA.
- These are not necessarily constructed to date & were in compliance with LUP management decisions regarding surface disturbing authorizations in PHMA/IHMA
- 2 projects exceeded site-scale caps, however the project level NEPA found a net benefit to this exceedance (avoiding undisturbed habitat etc)
- Population information is acquired from and analyzed with State partners
- A total of 42 population triggers have been tripped since 2015

- This map illustrates which BSUs have had triggers tripped.
- Note that population and habitat trigger thresholds vary across each land use plan
- Multiple triggers can be tripped in a BSU
- NV BSUs have been cross-walked to the PMUs where triggers have tripped